Table of Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Page</th>
<th>Changed</th>
<th>Rev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2007</td>
<td>31</td>
<td>correction to maximum torque rating 15 and 19 tooth</td>
<td>FB</td>
</tr>
<tr>
<td>April 2007</td>
<td>29</td>
<td>Revised dimensions for straight keyed shaft</td>
<td>FA</td>
</tr>
<tr>
<td>September-2006</td>
<td>21-22</td>
<td>Corrections in model code examples</td>
<td>F</td>
</tr>
<tr>
<td>September-2005</td>
<td></td>
<td>Major Revision</td>
<td>E</td>
</tr>
</tbody>
</table>

© 2007 Sauer-Danfoss. All rights reserved.

Sauer-Danfoss accepts no responsibility for possible errors in catalogs, brochures and other printed material. Sauer-Danfoss reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations aren't in conflict with agreed specifications. All trademarks in this material are properties of their respective owners. Sauer-Danfoss and the Sauer-Danfoss logotype are trademarks of the Sauer-Danfoss Group.
General Description

- Basic design .. 5
- Key features ... 6
- Cross sections .. 7
- System circuit diagram ... 8
- M46 motor schematic .. 8

Technical Specifications

- Overview ... 9
- General ... 9
- Features and options ... 9
- Specifications .. 9
- Operating parameters ... 10
- Fluid specifications .. 10
- Hydraulic unit life .. 10
- Performance .. 11
- Bearing life and external shaft loading .. 12

Operating Parameters

- Fluids ... 14
- Viscosity ... 14
- Temperature .. 14
- Case pressure ... 14
- Pressure ratings ... 15
- Speed ratings .. 16

System Design Parameters

- Sizing equations .. 17
- Flow ... 17
- Speed ... 17
- Torque .. 17
- Power .. 17
- Variables ... 17
- Filtration .. 18
- Bypass valve .. 18
- Loop flushing valve ... 19
- Redundant braking system requirement .. 20
- Reservoir ... 20
- Overpressure protection ... 20

Product Coding

- Revised model code ... 21
- Name plate .. 21
- Model code modules .. 21
 - Fixed motor ... 21
 - Variable motor ... 22

Features and Options

- Displacement limiters .. 23
- Displacement limiter M35 MV .. 23
- Displacement limiter M46 MV .. 23
- Speed sensor option ... 24
- Pulse pickup and connector .. 25
Series 40 Axial Piston Motors
Technical Information
General description

BASIC DESIGN

Series 40 is a family of hydrostatic pumps and motors for medium power applications with maximum loads of 345 bar [5000 psi]. These pumps and motors can be applied together or combined with other products in a system to transfer and control hydraulic power.

Series 40 transmissions (pump plus motor) provide an infinitely variable speed range between zero and maximum in both forward and reverse modes of operation. The pumps and motors each come in four frame sizes: M25, M35, M44, and M46.

Series 40 pumps are compact, high power density units. All models use the parallel axial piston / slipper concept in conjunction with a tiltable swashplate to vary the pump’s displacement. Reversing the angle of the swashplate reverses the flow of fluid from the pump, reversing the direction of rotation of the motor output.

Series 40 M35, M44, and M46 pumps may include an integral charge pump to provide system replenishing and cooling fluid flow, as well as servo control fluid flow on M46 pumps. M25 pumps are designed to receive charge flow from an auxiliary circuit or from a gear pump mounted on the auxiliary mounting pad. Series 40 pumps feature a range of auxiliary mounting pads to accept auxiliary hydraulic pumps for use in complementary hydraulic systems.

Series 40 M46 pumps offer proportional controls with either manual, hydraulic, or electronic actuation. An electric three-position control is also available. The M25, M35, and M44 pumps include a trunnion style direct displacement control.

Series 40 motors also use the parallel axial piston / slipper design in conjunction with a fixed or tiltable swashplate. The family includes M25, M35, M44 fixed motor units and M35, M44, M46 variable motor units.

The M35 and M44 variable motors feature a trunnion style swashplate and direct displacement control. The M46 variable motors use a cradle swashplate design and a two-position hydraulic servo control.
Series 40 Axial Piston Motors
Technical Information
General description

KEY FEATURES

• 4 sizes of variable displacement pumps
• 4 sizes of tandem pumps
• 3 sizes of variable displacement motors
• 3 sizes of fixed displacement motors
• Efficient axial piston design
• Complete family of control systems
• Proven reliability and performance
• Compact, lightweight
• Worldwide sales and service
General description

CROSS SECTIONS

M25 fixed motor (MF)

M35/M44 variable motor (MV)

M35/M44 fixed motor (MF)

M46 variable motor (MV) (SAE flange)
A Series 40 M35 fixed motor is shown in a hydraulic circuit with a Series 40 M46 variable pump. A loop flushing module is included on the motor. The circuit features suction filtration and heat exchanger.

The system ports (A and B) connect to the high pressure work lines. The motor receives pressurized fluid in its inlet port and discharges de-energized fluid through the outlet port. Either port can act as inlet or outlet; flow is bidirectional. System port pressure is gauged through ports M1 and M2. The motor has two case drains (L1 and L2). The motor may include loop flushing. Loop flushing provides additional cooling and filtration capacity.
OVERVIEW

Specifications and operating parameters are shown below. Not all hardware options are available for all configurations. For additional information, see Operating parameters, page 14, System design parameters, page 17, Product coding, page 21, Features and options, page 23 and Control options, page 32.

GENERAL

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product line</td>
<td>Series 40 motors</td>
</tr>
<tr>
<td>Product type</td>
<td>In-line, axial piston, fixed and variable, positive displacement motors</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Clockwise (CW) and counterclockwise (CCW)</td>
</tr>
<tr>
<td>Installation position</td>
<td>Discretionary, the housing must be filled with hydraulic fluid before operation</td>
</tr>
<tr>
<td>Filtration configuration</td>
<td>Suction or charge pressure filtration</td>
</tr>
<tr>
<td>Other system requirements</td>
<td>Independent braking system, circuit overpressure protection, suitable reservoir and heat exchanger</td>
</tr>
</tbody>
</table>

FEATURES AND OPTIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>M25 MF</th>
<th>M35 MF</th>
<th>M44 MF</th>
<th>M35 MV</th>
<th>M44 MV</th>
<th>M46 MV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of mounting</td>
<td>SAE B</td>
<td>SAE B</td>
<td>SAE B</td>
<td>SAE B</td>
<td>SAE B</td>
<td>SAE B or</td>
</tr>
<tr>
<td>Port connections</td>
<td>Twin, Axial</td>
<td>Side, Twin, Axial</td>
<td>Side, Twin, Axial</td>
<td>Twin</td>
<td>Twin</td>
<td>Side, Twin, Axial</td>
</tr>
<tr>
<td>Output shaft options</td>
<td>Splined Tapered</td>
<td>Splined Tapered Straight Key</td>
<td>Splined Tapered Straight Key</td>
<td>Splined</td>
<td>Splined</td>
<td>Splined Tapered</td>
</tr>
<tr>
<td>Control options</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>DDC</td>
<td>DDC</td>
</tr>
<tr>
<td>Loop flushing</td>
<td>Option</td>
<td>Option</td>
<td>Option</td>
<td>Option</td>
<td>Option</td>
<td>Option</td>
</tr>
<tr>
<td>Displacement limiters</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Option</td>
<td>Option</td>
<td>Option</td>
</tr>
<tr>
<td>Speed sensors</td>
<td>Option</td>
<td>Option</td>
<td>Option</td>
<td>-</td>
<td>-</td>
<td>Option</td>
</tr>
</tbody>
</table>

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Unit</th>
<th>M25 MF</th>
<th>M35 MF</th>
<th>M44 MF</th>
<th>M35 MV</th>
<th>M44 MV</th>
<th>M46 MV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model configuration</td>
<td>Fixed</td>
<td>Fixed</td>
<td>Fixed</td>
<td>Variable</td>
<td>Variable</td>
<td>Variable</td>
<td></td>
</tr>
<tr>
<td>Type of mounting</td>
<td>SAE B</td>
<td>SAE B</td>
<td>SAE B</td>
<td>SAE B</td>
<td>SAE B</td>
<td>SAE B</td>
<td></td>
</tr>
<tr>
<td>Mass moment of inertia</td>
<td>kgm² [slug•ft²]</td>
<td>0.0018 [0.0013]</td>
<td>0.0033 [0.0024]</td>
<td>0.0032 [0.0023]</td>
<td>0.0033 [0.0024]</td>
<td>0.0032 [0.0023]</td>
<td>0.0050 [0.0037]</td>
</tr>
</tbody>
</table>
OPERATING PARAMETERS

<table>
<thead>
<tr>
<th>Model</th>
<th>M25 MF</th>
<th>M35 MF</th>
<th>M44 MF</th>
<th>M35 MV</th>
<th>M44 MV</th>
<th>M46 MV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td>1.7 [25]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>5.2 [75]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed limits</td>
<td>min⁻¹ [rpm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated @ max disp.</td>
<td>4000</td>
<td>3600</td>
<td>3300</td>
<td>3600</td>
<td>3300</td>
<td>4000</td>
</tr>
<tr>
<td>Maximum @ max. disp.</td>
<td>5000</td>
<td>4500</td>
<td>4100</td>
<td>4500</td>
<td>4100</td>
<td>4100</td>
</tr>
<tr>
<td>Rated @ min. disp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4200</td>
<td>3900</td>
<td>4500</td>
</tr>
<tr>
<td>Maximum @ min. disp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5300</td>
<td>4850</td>
<td>5000</td>
</tr>
<tr>
<td>System pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td>210 [3000]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>345 [5000]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FLUID SPECIFICATIONS

Ratings and data are based on operation with premium petroleum-based hydraulic fluids containing oxidation, rust, and foam inhibitors.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Minimum</th>
<th>Continuous</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity</td>
<td>mm/sec (cSt) [SUS]</td>
<td>7 [47]</td>
<td>12-60 [70-278]</td>
<td>1600 [7500]</td>
</tr>
<tr>
<td>Cleanliness</td>
<td>ISO 4406 Class 18/13 or better</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtration efficiency</td>
<td>suction filtration</td>
<td>$\beta_{10,0.75} \geq 1.5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>charge filtration</td>
<td>$\beta_{10,0.75} \geq 10$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HYDRAULIC UNIT LIFE

Hydraulic unit life is the life expectancy of the hydraulic components. Hydraulic unit life is a function of speed and system pressure; however, system pressure is the dominant operating variable affecting hydraulic unit life. High pressure, which results from high load, reduces expected life.

It is desirable to have a projected machine duty cycle with percentages of time at various loads and speeds. Sauer-Danfoss calculates appropriate design pressure from this information. This method of selecting operating pressure is recommended whenever duty cycle information is available.
HYDRAULIC UNIT LIFE (continued)

All pressure limits are differential pressures and assume normal charge pressure. Series 40 motors will meet satisfactory life expectancy if applied within the parameters specified in this bulletin. For more detailed information on hydraulic unit life see BLN-9884 Pressure and Speed Limits.

PERFORMANCE

This performance graph provides typical volumetric and overall efficiencies for Series 40 motors. These efficiencies apply for all Series 40 motors at maximum displacement.

Motor performance as a function of operating speed

![Motor performance as a function of operating speed graph](image)

The performance map provides typical motor overall efficiencies at various operating parameters. These efficiencies apply for all Series 40 motors at maximum displacement.

Motor performance as a function of operating speed

![Motor performance as a function of operating speed graph](image)
BEARING LIFE AND EXTERNAL SHAFT LOADING

Bearing life is a function of speed, pressure and swashplate angle, plus any external loads. Other life factors include oil type and viscosity.

In vehicle propulsion drives with no external loads, where the speed, pressure, and swashplate angle are often changing, normal bearing β_{10} (90% survival) life will exceed the hydraulic unit life.

In non-propel drives, such as conveyors or fan drives, the operating speed and pressure may be nearly constant leading to a distinctive duty cycle compared to that of a propulsion drive. In propel applications, Sauer-Danfoss recommends a bearing life review.

Series 40 motors are designed with bearings that can accept some incidental external radial and thrust loads. However, any amount of external load will reduce the expected bearing life.

The allowable radial shaft loads are a function of the load position, the load orientation, and the operating pressures of the hydraulic unit. All external shaft loads have an effect on bearing life. In motor applications where external shaft loads cannot be avoided, the impact on bearing life can be minimized by orienting the load to the 180 degree position (see Direction of external shaft load, next page).

The recommended maximum radial load (R_e) is based on an external moment (M_e) and the distance (L) from the mounting flange to the load, (see table at below). The loads in the table reflect a worst case external load orientation (0 degrees), a continuously applied working pressure of 140 bar (2000 psi), 20 bar (285 psi) charge pressure, 1800 min$^{-1}$ (rpm), and a bearing life (β_{10}) of 2000 hours. Avoid thrust loads in either direction.

The recommended maximum allowable radial load is calculated as: $R_e = \frac{M_e}{L}$

If continuously applied external radial loads exceed the recommended maximum allowable, or thrust loads are known to occur, contact Sauer-Danfoss for an evaluation of unit bearing life. Optional high capacity bearings are available.

Tapered output shafts or clamp-type couplings are recommended for applications where radial shaft side loads are present.

Shaft loading parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_e</td>
<td>Maximum radial side load</td>
</tr>
<tr>
<td>M_e</td>
<td>Maximum external moment</td>
</tr>
<tr>
<td>L</td>
<td>Distance from mounting flange to point of load</td>
</tr>
<tr>
<td>F_B</td>
<td>Force of block (applies at center of gravity)</td>
</tr>
<tr>
<td>T</td>
<td>Thrust load</td>
</tr>
</tbody>
</table>

Recommended maximum external shaft moments

<table>
<thead>
<tr>
<th></th>
<th>M25</th>
<th>M35/44</th>
<th>M46</th>
</tr>
</thead>
</table>
External shaft loads

![External shaft loads diagram](image)

Direction of external shaft load

![Direction of external shaft load diagram](image)
Series 40 Axial Piston Motors
Technical Information
Operating parameters

FLUIDS

Ratings and performance data are based on operating with premium hydraulic fluids containing oxidation, rust, and foam inhibitors. These include premium turbine oils, API CD engine oils per SAE J183, M2C33F or G automatic transmission fluids (ATF), Dexron™ II (ATF) meeting Allison™ C-3 or Caterpillar™ T0-2 requirements, and certain specialty agricultural tractor fluids. For more information on hydraulic fluid selection, see Sauer-Danfoss publications: 520L0463, Hydraulic Fluids and Lubricants, Technical Information, and 520L465, Experience with Biodegradable Hydraulic Fluids, Technical Information.

VISCOSITY

Maintain fluid viscosity within the continuous range for maximum efficiency and bearing life. Minimum viscosity should only occur during brief occasions of maximum ambient temperature and severe duty cycle operation. Maximum viscosity should only occur at cold start: Limit speeds until the system warms up. See Sauer-Danfoss publication: 520L0463, Hydraulic Fluids and Lubricants, Technical Information

<table>
<thead>
<tr>
<th>Fluid viscosity limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
</tr>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Continuous</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
</tbody>
</table>

TEMPERATURE

Maintain fluid temperature within the limits shown in the table. Minimum temperature relates to the physical properties of the component materials. Cold oil will not affect the durability of the motor components. However, it may affect the ability of the motor to transmit power. Maximum temperature is based on material properties. Don’t exceed it. Measure maximum temperature at the hottest point in the system. This is usually the case drain.

<table>
<thead>
<tr>
<th>Temperature limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum (intermittent, cold start)</td>
</tr>
<tr>
<td>Continuous</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
</tbody>
</table>

Ensure fluid temperature and viscosity limits are concurrently satisfied.

CASE PRESSURE

Maintain case pressure within the limits shown in the table. Ensure housing is kept filled with hydraulic fluid.

<table>
<thead>
<tr>
<th>Case pressure limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum (continuous)</td>
</tr>
<tr>
<td>Intermittent (cold start)</td>
</tr>
</tbody>
</table>

Caution

Operating outside of case pressure limits will damage the motor. To minimize this risk, use full size inlet and case drain plumbing, and limit line lengths.
The table, *Operating parameters*, page 10, gives maximum and continuous pressure ratings for each displacement. Not all displacements operate under the same pressure limits. Definitions of the operating pressure limits appear below.

System pressure is the differential pressure between system ports A and B. It is the dominant operating variable affecting hydraulic unit life. High system pressure, which results from high load, reduces expected life. System pressure must remain at or below continuous working pressure during normal operation to achieve expected life.

Continuous working pressure is the average, regularly occurring operating pressure. Operating at or below this pressure should yield satisfactory product life.

Maximum (peak) working pressure is the highest intermittent pressure allowed. Maximum machine load should never exceed this pressure. For all applications, the load should move below this pressure.

All pressure limits are differential pressures referenced to low loop (charge) pressure. Subtract low loop pressure from gauge readings to compute the differential.

System pressure limits

<table>
<thead>
<tr>
<th>Pressure Limits</th>
<th>bar</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>210</td>
<td>3000</td>
</tr>
<tr>
<td>Maximum</td>
<td>345</td>
<td>5000</td>
</tr>
</tbody>
</table>
SPEED RATINGS

The table, *Operating parameters*, page 10, gives rated and maximum speeds for each displacement. Not all displacements operate under the same speed limits. Definitions of these speed limits appear below.

Rated speed is the maximum recommended operating speed at full power condition. Operating at or below this speed should yield satisfactory product life. In vehicle propel applications, maximum motor speed during unloaded, on-road travel over level ground should not exceed this limit.

Maximum speed is the highest operating speed permitted. Exceeding maximum speed reduces pump life and can cause loss of hydrostatic power and braking capacity. Never exceed the maximum speed limit under any operating conditions.

⚠️ **Warning**

Unintended vehicle or machine movement hazard.

The loss of hydrostatic drive line power, in any mode of operation (forward, neutral, or reverse) may cause the system to lose hydrostatic braking capacity. You must provide a braking system, redundant to the hydrostatic transmission, sufficient to stop and hold the vehicle or machine in the event of hydrostatic drive power loss.

Speed limits

<table>
<thead>
<tr>
<th>Limit</th>
<th>M25 MF</th>
<th>M35 MF</th>
<th>M44 MF</th>
<th>M35 MV</th>
<th>M44 MV</th>
<th>M46 MV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated at max. displ...</td>
<td>4000</td>
<td>3600</td>
<td>3300</td>
<td>3600</td>
<td>3300</td>
<td>4000</td>
</tr>
<tr>
<td>Maximum at max. displ...</td>
<td>5000</td>
<td>4500</td>
<td>4100</td>
<td>4500</td>
<td>4100</td>
<td>4100</td>
</tr>
<tr>
<td>Rated at min. displ...</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4200</td>
<td>3900</td>
<td>4500</td>
</tr>
<tr>
<td>Maximum at min. displ...</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5300</td>
<td>4850</td>
<td>5000</td>
</tr>
</tbody>
</table>
SIZING EQUATIONS

Use the following equations to compute output power, torque, speed, and input flow. Selecting the right motor starts with an evaluation of system requirements such as speed and torque. Select a motor that will transmit the required torque, then select a pump that will meet the flow and pressure requirements of the motor. For more information on hydrostatic drive selection, refer to Sauer-Danfoss applications guideline **BLN-9885, Selection of Drive Line Components.**

Based on SI units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>(\frac{V_g \cdot n}{1000 \cdot \eta_v}) (l/min)</td>
</tr>
<tr>
<td>Speed</td>
<td>(\frac{Q \cdot 1000 \cdot \eta_m}{V_g}) (min(^{-1}))</td>
</tr>
<tr>
<td>Torque</td>
<td>(\frac{V_g \cdot \Delta p \cdot \eta_v}{20 \cdot \pi}) (N(\cdot)m)</td>
</tr>
<tr>
<td>Power</td>
<td>(\frac{Q \cdot \Delta p \cdot \eta_m}{600}) (kW)</td>
</tr>
</tbody>
</table>

Based on US units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>(\frac{V_g \cdot n}{231 \cdot \eta_v}) (US gal/min)</td>
</tr>
<tr>
<td>Speed</td>
<td>(\frac{Q \cdot 231 \cdot \eta_m}{V_g}) (min(^{-1}))</td>
</tr>
<tr>
<td>Torque</td>
<td>(\frac{V_g \cdot \Delta p \cdot \eta_v}{2 \cdot \pi}) (lbf(\cdot)in)</td>
</tr>
<tr>
<td>Power</td>
<td>(\frac{Q \cdot \Delta p \cdot \eta_m}{1714}) (hp)</td>
</tr>
</tbody>
</table>

Variables

- \(V_g \) = Displacement per revolution [cm\(^3\)/rev, in\(^3\)/rev]
- \(p_o \) = Outlet pressure [bar, psi]
- \(p_i \) = Inlet pressure [bar, psi]
- \(\Delta p \) = Outlet - Inlet pressure (system pressure) [bar, psi]
- \(n \) = Speed [min\(^{-1}\), (rpm)]
- \(\eta_v \) = Volumetric efficiency
- \(\eta_m \) = Mechanical efficiency
- \(\eta_t \) = Overall efficiency (\(\eta_v \) \cdot \(\eta_m \))
Series 40 Axial Piston Motors
Technical Information
System design parameters

FILTRATION

To prevent damage to the system, including premature wear, fluid entering the motor must be free of contaminants. Series 40 motors require system filtration capable of maintaining fluid cleanliness at ISO 4406-1999 class 22/18/13 or better.

Consider these factors when selecting a system filter:
- Cleanliness specifications
- Contaminant ingression rates
- Flow capacity
- Desired maintenance interval

The filter may be located either on the inlet (suction filtration) or discharge (charge pressure filtration) side of the charge pump. Series 40 pumps are available with provisions for either suction or charge pressure filtration to filter the fluid entering the charge circuit (see next page).

Typically, a filter with a beta ratio of $\beta_{10} = 1.5$ to 2.0 is adequate. However, open circuit systems supplied from a common reservoir may have considerably higher requirements. Because each system is unique, only a thorough testing and evaluation program can fully validate the filtration system. For more information, see Sauer-Danfoss publication 520L0467, *Design Guidelines for Hydraulic Fluid Cleanliness*.

BYPASS VALVE

In some applications it is desirable to bypass fluid around the variable displacement pump, for example; to allow a vehicle to move short distances at low speeds without running the prime mover. This is done by opening a manually operated bypass valve. This valve connects both sides of the pump/motor circuit and allows the motor to turn. During normal operation, this valve must be fully closed.

Bypass valves are available in Series 40 pumps. See Sauer-Danfoss publication: 520L0635, *Series 40 Pumps Technical Information*.

Bypass valves are intended for moving a machine or vehicle for very short distances at very slow speeds. They are NOT intended as tow valves.
Series 40 Axial Piston Motors
Technical Information
System design parameters

LOOP FLUSHING VALVE

Series 40 motors may incorporate an integral loop flushing valve. Installations that require additional fluid to be removed from the main hydraulic circuit because of fluid cooling or cleanliness requirements, will benefit from loop flushing. A loop flushing valve will remove heat and contaminants from the main loop at a rate faster than otherwise possible. Contact your Sauer-Danfoss representative for production availability on specific frame size motors.

Series 40 loop flushing valves include a loop flushing relief valve with integral orifice. The flushing flow is a function of the pump charge relief valve, and the orifice size.

Loop flushing flows of 3 to 7 l/min [0.75 to 2 US gal/min] are adequate for most applications. Contact your Sauer-Danfoss representative for assistance.

⚠️ **WARNING**
Incorrect charge pressure settings may result in the inability to build required system pressure and/or inadequate loop flushing flows. Maintain correct charge pressure under all conditions.

Typical loop flushing flow as a function of charge pressure

![Diagram of loop flushing valve](image)

Loop flushing valve

- Loop flushing relief valve
- Loop flushing shuttle valve

Graph:

- Flow rate (l/min) vs. Charge pressure (bar [psi])
- Data points:
 - 0: 0 l/min [0.00 US gal/min]
 - 8.62: 1.54 l/min [0.40 US gal/min]
 - 12.07: 2.86 l/min [0.75 US gal/min]
 - 15.51: 4.18 l/min [1.10 US gal/min]
 - 19.96: 5.50 l/min [1.40 US gal/min]
 - 22.41: 6.82 l/min [1.75 US gal/min]
 - 25.86: 8.14 l/min [2.00 US gal/min]

Legend:
- P100 643E
- P100 448E
REdundant Braking System Requirement

Warning

Unintended vehicle or machine movement hazard.

The loss of hydrostatic drive line power, in any mode of operation (forward, neutral, or reverse) may cause the system to lose hydrostatic braking capacity. You must provide a braking system, redundant to the hydrostatic transmission, sufficient to stop and hold the vehicle or machine in the event of hydrostatic drive power loss.

Reservoir

The reservoir provides clean fluid, dissipates heat, and removes entrained air from the hydraulic fluid. It allows for fluid volume changes associated with fluid expansion and cylinder differential volumes. Minimum reservoir capacity depends on the volume needed to perform these functions. Typically, a capacity of one half the charge pump flow (per minute) is satisfactory for a closed reservoir. Open circuit systems sharing a common reservoir will require greater fluid capacity.

Locate the reservoir outlet (suction line) near the bottom, allowing clearance for settling foreign particles. Use a 100 - 125 µm screen covering the outlet port. Place the reservoir inlet (return lines) below the lowest expected fluid level, as far away from the outlet as possible. Use a baffle (or baffles) between the reservoir inlet and outlet ports to reduce aeration and fluid surging.

Overpressure Protection

Series 40 motors (as well as other system components) have pressure limits. Relief valves or pressure limiters should be present in the high pressure circuit to protect components from excessive pressures.

Series 40 pumps are available with a range of high pressure relief valve settings. See Sauer-Danfoss publication 520L0635, *Series 40 Pumps Technical Information*.

Caution

High pressure relief valves are intended for transient overpressure protection and are not intended for continuous pressure control. Operation over relief valves for extended periods of time may result in severe heat build up. High flows over relief valves may result in pressure levels exceeding the nominal valve setting and potential damage to system components.
REvised model code

The model code is a modular description of a specific product and its options. To create an order code to include the specific options desired, see the Series 40 Motor Model Code Supplement or the Series 40 Price Book.

name plate

Model code

Made in USA

Serial number

Place of manufacture

Model number

model code modules

Fixed motor

Product

Type

C Seal group
D Output shaft/through shaft configuration
E Endcap configuration
F Cylinder block group
G Housing configuration
T Special hardware features
Z Special features (non-hardware) ** = None
Model Code Modules

Variable motor

![Code Diagram]

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Seal group</td>
</tr>
<tr>
<td>D</td>
<td>Output shaft/through shaft configuration</td>
</tr>
<tr>
<td>E</td>
<td>Endcap configuration</td>
</tr>
<tr>
<td>F</td>
<td>Control features</td>
</tr>
<tr>
<td>G</td>
<td>Housing configuration</td>
</tr>
<tr>
<td>T</td>
<td>Special hardware features</td>
</tr>
<tr>
<td>Z</td>
<td>Special features (non-hardware)</td>
</tr>
</tbody>
</table>

Displacement

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Product</td>
</tr>
<tr>
<td>V</td>
<td>Type</td>
</tr>
<tr>
<td>S</td>
<td>Displacement</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>Z</td>
<td>G</td>
</tr>
</tbody>
</table>

Notes:

- P104 427E
- *** = None
Series 40 Axial Piston Motors
Technical Information
Features and options

DISPLACEMENT LIMITERS

M35, M44, and M46 variable motors have **minimum displacement limiters**. Minimum unit displacement is obtained with the adjuster screw at its maximum extension from the end cap or displacement control piston cover. All motors are shipped with the displacement limiter set for minimum motor displacement.

The M35 and M44 MV minimum displacement limiter is located in the end cap. The M46 MV minimum displacement limiter is located in the displacement control piston cavity. The length and configuration of this limiter will depend upon the control option installed in the motor.

M46 MV units may have an optional mechanical **maximum displacement limiter** located in the displacement control piston cover. The maximum displacement limit can be adjusted by loosening the sealing lock nut, adjusting displacement by rotating the screw with a screwdriver, then locking the adjuster by torquing the sealing lock nut.

Maximum unit displacement is obtained with the adjuster screw standing at its maximum height out of the displacement control piston cover. All motors are shipped with the limiter set for maximum motor displacement.

WARNING
Undesirable output speed hazard.
Take care adjusting displacement limiters.
Too low of a minimum displacement setting can result in higher than expected output speed.
Retorque the sealing locknut after every adjustment to prevent an unexpected changes and to prevent external leakage.

Displacement limiter M35/M44 MV

Displacement limiter M46 MV
Series 40 motors are available with a speed sensor option for direct measurement of motor output speed. You can use this sensor may to sense the direction and speed of motor rotation.

A special magnetic speed ring is pressed onto the outside diameter of the cylinder block. A hall effect pulse pickup is located in the motor housing. The sensor accepts supply voltage and outputs a digital pulse signal in response to the speed of the ring. The output changes its high/low state as the north and south poles of the permanently magnetized speed ring pass by the face of the sensor. The digital signal is generated at frequencies suitable for microprocessor based controls.

This sensor will operate with a supply voltage of 4.5 to 15 Vdc, and requires a current of 12 mA at 5.0 Vdc (minimum) under no load. Maximum operating current is 20 mA at 5 Vdc (maximum). Maximum operating frequency is 15 kHz. Output voltage in High State (VOH) is sensor supply voltage minus 0.5 Vdc, minimum. Output voltage in Low State (VOL) is 0.5 Vdc, maximum. The sensor is available with a Packard Weather-Pack™ or 4-pin sealed connector.

Contact your Sauer-Danfoss representative for production availability on specific motor frame sizes, or for special speed sensor options.

Speed sensor specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>4.5 - 15 Vdc</td>
</tr>
<tr>
<td>Required current</td>
<td>12 mA @ 5 Vdc</td>
</tr>
<tr>
<td>(no load)</td>
<td></td>
</tr>
<tr>
<td>Maximum current</td>
<td>20 mA @ 5Vdc</td>
</tr>
<tr>
<td>Maximum frequency</td>
<td>15 kHz</td>
</tr>
<tr>
<td>VOH</td>
<td>Supply Vdc - 0.5 Vdc</td>
</tr>
<tr>
<td>VOL</td>
<td>0.5 Vdc maximum</td>
</tr>
<tr>
<td>Magnetic ring</td>
<td>M25, M35, M44, M46</td>
</tr>
<tr>
<td>Pulses/revolution</td>
<td>43, 46, 46, 51</td>
</tr>
<tr>
<td>Connector</td>
<td>Packard Weather-Pack™</td>
</tr>
<tr>
<td></td>
<td>3-pin, 4-pin</td>
</tr>
</tbody>
</table>
Series 40 Axial Piston Motors
Technical Information
Features and options

PULSE PICKUP AND CONNECTOR

Speed sensor with directional signal

Packard Weather-Pack™
4 pin tower connector

- Red
- White
- Black
- Green

Supply voltage +
Speed signal
Ground common
Direction

Mating parts kit part number K03379 (4 pin)

Speed sensor without directional signal

3 pin Weather-Pack™ shroud

- Red
- White
- Black

Supply voltage +
Speed signal
Ground common

Mating parts kit part number K20582 (3 pin)
SHAFT OPTIONS

Series 40 motors are available with a variety of splined, straight keyed, and tapered shaft ends. Nominal shaft sizes and torque ratings for some available shafts are shown in the accompanying table. Other shaft options may exist. Contact your Sauer-Danfoss representative for availability.

Torque ratings assume no external radial loading. Continuous torque ratings for splined shafts are based on spline tooth wear, and assume the mating spline has a minimum hardness of R_C 55 to full spline depth and coupling has good lubrication.

Maximum torque ratings are based on shaft torsional strength and assume a maximum of 200,000 load reversals.

Shaft availability and torque ratings

<table>
<thead>
<tr>
<th>N•m [lbf•in]</th>
<th>M25 MF</th>
<th>M35 MF</th>
<th>M44 MF</th>
<th>M35 MV</th>
<th>M44 MV</th>
<th>M46 MV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spline 19-tooth, 16/32 pitch</td>
<td>Continuous</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>194 [1710]</td>
</tr>
<tr>
<td>Max</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>460 [4070]</td>
</tr>
<tr>
<td>Tapered 1.00 inch</td>
<td>Max</td>
<td>140 [1240]</td>
<td>497 [4400]</td>
<td>497 [4400]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Straight keyed 0.875 inch</td>
<td>Max</td>
<td>-</td>
<td>226 [2000]</td>
<td>226 [2000]</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Recommended mating splines for Series 40 splined output shafts should be in accordance with ANSI B92.1 Class 5. Sauer-Danfoss external splines are modified Class 5 Fillet Root Side Fit. The external spline Major Diameter and Circular Tooth Thickness dimensions are reduced in order to assure a clearance fit with the mating spline.

THROUGH-SHAFT OPTIONS

Optional through-shafts are available on Series 40 fixed and variable displacement motors (as noted in the accompanying table). Through-shafts are provided for use in secondary (parking) braking systems. Through-shaft ends are not intended for continuous power transmission.

Through-shaft availability and torque limitations

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Shaft spline</th>
<th>Max. torque limit N•m [lbf•in]</th>
</tr>
</thead>
<tbody>
<tr>
<td>M35 MF</td>
<td>13T 16/32 P</td>
<td>328 [2900]</td>
</tr>
<tr>
<td>M44 MF</td>
<td>13T 16/32 P</td>
<td>328 [2900]</td>
</tr>
<tr>
<td>M46 MV (SAE)</td>
<td>13T 16/32 P</td>
<td>328 [2900]</td>
</tr>
</tbody>
</table>

⚠️ WARNING

Potential loss of braking capacity.

Exceeding these torque limits could cause shaft breakage. Ensure your application never exceeds maximum torque limits under any operating conditions.
Shaft options

Series 40 Axial Piston Motors
Technical Information

M25 MF

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Torque rating</th>
<th>Continuous torque rating</th>
<th>Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>13-tooth 16/32 pitch (ANSI B92.1 1970 - Class 5)</td>
<td>140 [1240]</td>
<td>80 [750]</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Ø 25.4 mm [1.000 in] 1:8 taper</td>
<td>140 [1240]</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Contact SAUER-DANFOSS Application Engineering for specific installation drawings.

Dimensions in mm [in]
M35/44 MF

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Torque rating Maximum torque rating N•m [lbf•in]</th>
<th>Continuous torque rating N•m [lbf•in]</th>
<th>Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>13 tooth 226 [2000]</td>
<td>13 tooth 73 [650]</td>
<td></td>
</tr>
<tr>
<td>A, C</td>
<td>Splined output shaft (see table)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>15 tooth 362 [3200]</td>
<td>15 tooth 153 [1350]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M35 / M44 MF splined shaft option

<table>
<thead>
<tr>
<th>Shaft option</th>
<th>Shaft length S</th>
<th>Shaft diameter T</th>
<th>Full spline U</th>
<th>Major dia. V</th>
<th>Pitch dia. W</th>
<th>No. teeth Y</th>
<th>Pitch Z</th>
<th>Thru shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>33.55 [1.321]</td>
<td>18.8 [0.74]</td>
<td>16.5 [0.65]</td>
<td>21.72 [0.8550]</td>
<td>20.638 [0.8125]</td>
<td>13</td>
<td>16/32</td>
<td>...</td>
</tr>
<tr>
<td>C</td>
<td>33.55 [1.321]</td>
<td>18.8 [0.74]</td>
<td>16.5 [0.65]</td>
<td>21.72 [0.8550]</td>
<td>20.638 [0.8125]</td>
<td>13</td>
<td>16/32</td>
<td>13T</td>
</tr>
<tr>
<td>F</td>
<td>33.55 [1.321]</td>
<td>21.98 [0.865]</td>
<td>18.5 [0.73]</td>
<td>24.89 [0.9800]</td>
<td>23.812 [0.9375]</td>
<td>15</td>
<td>16/32</td>
<td>...</td>
</tr>
</tbody>
</table>
Torque rating

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Maximum torque rating N•m [lbf•in]</th>
<th>Continuous torque rating N•m [lbf•in]</th>
<th>Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Ø 25.4 mm [1.000 in] 1:8 taper</td>
<td>497 [4400]</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Y</td>
<td>Ø 22.2 mm [0.874 in] straight keyed</td>
<td>226 [2000]</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Dimensions in mm [in]

Contact SAUER-DANFOSS Application Engineering for specific installation drawings.
M35/44 MV

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Torque rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Maximum torque rating N•m [lbf•in]</td>
</tr>
<tr>
<td>A</td>
<td>Splined output shaft (see table)</td>
<td>73 [650]</td>
</tr>
</tbody>
</table>

M35 / M44 MV splined shaft option

<table>
<thead>
<tr>
<th>Shaft option</th>
<th>Max. coupling engagement S</th>
<th>Shaft diameter T</th>
<th>Full spline length U</th>
<th>Major dia. V</th>
<th>Pitch dia. W</th>
<th>No. teeth Y</th>
<th>Pitch</th>
<th>Thru shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>33.3 [1.31]</td>
<td>18.8 [0.74]</td>
<td>16.5 [0.65]</td>
<td>21.72 [0.855]</td>
<td>20.638 [0.8125]</td>
<td>13</td>
<td>16/32</td>
<td>---</td>
</tr>
</tbody>
</table>

Dimensions in mm [in]

Contact SAUER-DANFOSS Application Engineering for specific installation drawings.
Series 40 Axial Piston Motors

Technical Information

Shaft options

M46 MV

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Torque rating</th>
<th>Continuous torque rating</th>
<th>Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Maximum torque rating N•m [lbf•in]</td>
<td>N•m [lbf•in]</td>
<td></td>
</tr>
<tr>
<td>A, B</td>
<td>Splined output shaft (see table)</td>
<td>13 tooth 226 [2000]</td>
<td>13 tooth 73 [650]</td>
<td></td>
</tr>
<tr>
<td>E, F</td>
<td></td>
<td>15 tooth 362 [3200]</td>
<td>15 tooth 153 [1350]</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>19 tooth 460 [4070]</td>
<td>19 tooth 194 [1710]</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>25.4 [1,000] tapered shaft</td>
<td>—</td>
<td>497 [4400]</td>
<td></td>
</tr>
</tbody>
</table>

M46 MV splined shaft option

<table>
<thead>
<tr>
<th>Shaft option</th>
<th>Shaft extension</th>
<th>Max. coupling engagement</th>
<th>Shaft diameter</th>
<th>Full spline length</th>
<th>Major dia.</th>
<th>Pitch dia.</th>
<th>No. teeth</th>
<th>Pitch</th>
<th>Thru shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>32.94</td>
<td>32</td>
<td>19.1</td>
<td>15.8</td>
<td>21.72</td>
<td>20.638</td>
<td>13</td>
<td>16/32</td>
<td>---</td>
</tr>
<tr>
<td>B</td>
<td>32.94</td>
<td>32</td>
<td>19.1</td>
<td>15.8</td>
<td>21.72</td>
<td>20.628</td>
<td>13</td>
<td>16/32</td>
<td>13T</td>
</tr>
<tr>
<td>E</td>
<td>37.72</td>
<td>36.6</td>
<td>22.3</td>
<td>22.66</td>
<td>24.89</td>
<td>23.812</td>
<td>15</td>
<td>16/32</td>
<td>---</td>
</tr>
<tr>
<td>F</td>
<td>37.72</td>
<td>36.6</td>
<td>22.3</td>
<td>22.66</td>
<td>24.89</td>
<td>23.812</td>
<td>15</td>
<td>16/32</td>
<td>13T</td>
</tr>
<tr>
<td>D</td>
<td>37.72</td>
<td>36.6</td>
<td>28.4</td>
<td>22.35</td>
<td>31.24</td>
<td>30.162</td>
<td>19</td>
<td>16/32</td>
<td>---</td>
</tr>
</tbody>
</table>

Contact SAUER-DANFOSS Application Engineering for specific installation drawings. Dimensions in mm [in]

520L0636 • Rev FB • November 2007 31
Series 40 Axial Piston Motors
Technical Information
Control options

DIRECT DISPLACEMENT CONTROL (DDC)

The direct displacement control is available on either side of the M35 and M44 variable motors. It provides a simple, positive method of displacement control. Movement of the control shaft causes a proportional swashplate movement, thus varying the motor's displacement from full to minimum displacement.

Neutral position is not factory set, nor is there any internal neutral return mechanism. The application must include provisions for all control linkage and neutral return functionality.

WARNING
Unintended vehicle movement hazard. Internal forces may not return the swashplate to the neutral position under all operating conditions.

External Control Handle Requirements
Maximum allowable trunnion torque is 79.1 N•m [700 lbf•in]. Minimum torque necessary to hold the swashplate per 70 bar of differential system pressure is 11.3 N•m [100 lbf•in]. Maximum trunnion angle is 16° for M35 and M44.

DDC input specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. torque N•m [lbf•in]</td>
<td>79.1 [700]</td>
</tr>
<tr>
<td>Min. torque to hold (per 70 bar [1000 psi] system pressure) N•m [lbf•in]</td>
<td>11.3 [100]</td>
</tr>
<tr>
<td>Max. angle</td>
<td>16°</td>
</tr>
</tbody>
</table>

DDC on left side of M35 motor

Minimum swashplate angle

16° for M35
16° for M44

Motor displacement vs swashplate rotation

[Diagram showing motor displacement vs swashplate rotation]
Series 40 Axial Piston Motors
Technical Information
Control options

TWO-POSITION HYDRAULIC CONTROL

Series 40 M46 variable displacement motors are equipped with a hydraulically controlled swashplate. The motor is spring biased toward maximum displacement. A hydraulic piston is used to shift the swashplate from maximum to minimum displacement. A single or two-line control can regulate the servo piston.

With the standard single-line control option, hydraulic pressure is supplied to the control port (X1) to shift the motor to minimum displacement. The opposite end of the displacement control piston internally drains to the motor case. The swashplate shifts with a minimum pressure of 13.8 bar [200 psi]. The bias spring returns the motor to maximum displacement when control pressure is removed.

The single-line control generally uses a customer supplied 2-position, 3-way control valve. Hydraulic pressure on the control piston must not exceed 27.6 bar [400 psi].

In applications which encounter frequent shifting on-the-go as part of the normal duty cycle, we recommend the optional two-line control. Applications with routine shifting from work range to travel range may not require the two-line control. To command minimum displacement, port control pressure to port X1 and drain port X2. To command maximum displacement, port control pressure to port X2 and drain port X1.

The two-line control generally uses a customer supplied 2-position, 4-way control valve. Hydraulic pressure on the control piston must not exceed 27.6 bar [400 psi].

Orifices in either (or both) the control valve supply and drain lines optimize the shift rate for either the single or two-line control. Contact your Sauer-Danfoss representative for additional information.

Input specifications bar [psi]

<table>
<thead>
<tr>
<th></th>
<th>Single line control</th>
<th>Two line control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. pressure on control</td>
<td>27.6 [400]</td>
<td>27.6 [400]</td>
</tr>
<tr>
<td>Min. pressure to shift</td>
<td>13.8 [200]</td>
<td>13.8 [200]</td>
</tr>
<tr>
<td>Control valve (customer supplied)</td>
<td>2-position / 3 way</td>
<td>2-position / 4-way</td>
</tr>
</tbody>
</table>

M46 2-position hydraulic controls

- **Top**
 - Port X2
 - Control pressure supply (for maximum displacement)

- **Bottom**
 - Port X1
 - Control pressure supply (for minimum displacement)

- **Two-line control**

520L0636 • Rev FB • November 2007
M25 MF: AXIAL PORTS, TWIN PORTS, LOOP FLUSHING, SPEED SENSOR

Flow direction

<table>
<thead>
<tr>
<th>Motor shaft rotation</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clockwise (CW)</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>Counterclockwise (CCW)</td>
<td>Out</td>
<td>In</td>
</tr>
</tbody>
</table>

Axial or twin ports

With loop flushing

*All ports are SAE straight thread o-ring ports per SAE JS14, unless otherwise specified.

Shaft rotation is determined by viewing pump from input shaft end.

Contact SAUER-DANFOSS Application Engineering for specific installation drawings.

Dimensions in mm [in]
M25 MF: MOUNTING FLANGE

All ports are SAE straight thread o-ring ports per SAE J514, unless otherwise specified.

Shaft rotation is determined by viewing pump from input shaft end.

Contact SAUER-DANFOSS Application Engineering for specific installation drawings.

Dimensions in mm [in]
Series 40 Axial Piston Motors

Technical Information

Installation drawings

M35/M44 MF: AXIAL PORTS, TWIN PORTS, LOOP FLUSHING, SPEED SENSOR

Axial ports

- Port A
 - 1-1/16-12" (2) places
 - 7/8-14" Case drain - L3
 - 7/16-20* System pressure gauge port - M2
 - Loop flushing valve (option)

- Port B
 - 1-1/16-12" (2) places
 - 7/8-14" Case drain - L3
 - 7/16-20* System pressure gauge port - M2
 - Loop flushing valve (option)

Twin ports

- Port A
 - 1-1/16-12" (2) places
 - 7/8-20* System pressure gauge port - M1
 - Loop flushing valve (option)

- Port B
 - 1-1/16-12" (2) places
 - 7/8-20* System pressure gauge port - M1
 - Loop flushing valve (option)

Flow direction

<table>
<thead>
<tr>
<th>Motor shaft rotation</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clockwise</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>Counterclockwise</td>
<td>Out</td>
<td>In</td>
</tr>
</tbody>
</table>

*All ports are SAE straight thread o-ring ports per SAE J14, unless otherwise specified.

Shaft rotation is determined by viewing pump from input shaft end.

Contact SAUER-DANFOSS Application Engineering for specific installation drawings.

Dimensions in mm [in]
M35/M44 MF: SIDE PORTS, THROUGH SHAFT

All ports are SAE straight thread o-ring ports per SAE J514, unless otherwise specified. Shaft rotation is determined by viewing pump from input shaft end. Contact SAUER-DANFOSS Application Engineering for specific installation drawings.
Series 40 Axial Piston Motors
Technical Information
Installation drawings

M35/M44 MV: TWIN PORTS

*All ports are SAE straight thread o-ring ports per SAE JS14, unless otherwise specified. Shaft rotation is determined by viewing pump from input shaft end. Contact SAUER-DANFOSS Application Engineering for specific installation drawings.

Dimensions in mm [in]
M35/M44 MV:
MOUNTING FLANGE,
TRUNNION Control

*All ports are SAE straight thread o-ring ports per SAE J514, unless otherwise specified.
Shaft rotation is determined by viewing pump from input shaft end.
Contact SAUER-DANFOSS Application Engineering for specific installation drawings.

Dimensions in mm [in]
Series 40 Axial Piston Motors
Technical Information
Installation drawings

M46 MV: SIDE PORTS, LOOP FLUSHING

Radial (side) ports w/o loop flushing

Radial (side) ports w/ loop flushing

Flow direction

<table>
<thead>
<tr>
<th>Motor shaft direction</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clockwise (CW)</td>
<td>Out</td>
<td>In</td>
</tr>
<tr>
<td>Counterclockwise (CCW)</td>
<td>In</td>
<td>Out</td>
</tr>
</tbody>
</table>

*All ports are SAE straight thread o-ring ports per SAE J514, unless otherwise specified. Shaft rotation is determined by viewing pump from input shaft end.
Contact SAUER-DANFOSS Application Engineering for specific installation drawings.

Dimensions in mm [in]
M46 MV: AXIAL PORTS, LOOP FLUSHING

Axial ports w/ loop flushing

*All ports are SAE straight thread o-ring ports per SAE J514, unless otherwise specified.

Shaft rotation is determined by viewing pump from input shaft end.

Contact SAUER-DANFOSS Application Engineering for specific installation drawings.

Dimensions in mm [in]
*All ports are SAE straight thread o-ring ports per SAE J514, unless otherwise specified.

Shaft rotation is determined by viewing pump from input shaft end.

Contact SAUER-DANFOSS Application Engineering for specific installation drawings.

Dimensions in mm [in]
M46 MV: MOUNTING FLANGE

*All ports are SAE straight thread o-ring ports per SAE J514, unless otherwise specified.
Shaft rotation is determined by viewing pump from input shaft end.
Contact SAUER-DANFOSS Application Engineering for specific installation drawings.

Dimensions in mm [in]
Series 40 Axial Piston Motors

Technical Information

Installation drawings

M46 MV: CONTROL PORTS

All ports are SAE straight thread o-ring ports per SAE J514, unless otherwise specified. Shaft rotation is determined by viewing pump from input shaft end. Contact SAUER-DANFOSS Application Engineering for specific installation drawings.

Control w/ bottom pressure supply port and externally adjustable displacement limiters

![Diagram of control with bottom pressure supply port and externally adjustable displacement limiters]

- Min. displacement adjustment screw (3/16 in. internal hex)
- Max. displacement adjustment screw (screwdriver slot)
- 9/16 - 18" Control pressure port X1

Control w/ top and bottom pressure supply ports

![Diagram of control with top and bottom pressure supply ports]

- 9/16 - 18" Control pressure port X2
- 9/16 - 18" Control pressure port X1
- Both sides

Dimensions in mm [in]
M25/M35/M44
FIXED MOTOR
SCHEMATICS
(NO LOOP FLUSHING)

M25/M35/M44
FIXED MOTOR
SCHEMATICS

M35/M44
VARIABLE MOTOR
SCHEMATICS

M46
VARIABLE MOTOR
SCHEMATICS
Sauer-Danfoss Mobile Power and Control Systems
– Market Leaders Worldwide

Sauer-Danfoss is a comprehensive supplier providing complete systems to the global mobile market.

Sauer-Danfoss serves markets such as agriculture, construction, road building, material handling, municipal, forestry, turf care, and many others.

We offer our customers optimum solutions for their needs and develop new products and systems in close cooperation and partnership with them.

Sauer-Danfoss specializes in integrating a full range of system components to provide vehicle designers with the most advanced total system design.

Sauer-Danfoss provides comprehensive worldwide service for its products through an extensive network of Global Service Partners strategically located in all parts of the world.

OUR PRODUCTS

Hydrostatic transmissions
Hydraulic power steering
Electric power steering
Electrohydraulic power steering
Closed and open circuit axial piston pumps and motors
Gear pumps and motors
Bent axis motors
Orbital motors
Transit mixer drives
Planetary compact gears
Proportional valves
Directional spool valves
Cartridge valves
Hydraulic integrated circuits
Hydrostatic transaxles
Integrated systems
Fan drive systems
Electrohydraulics
Microcontrollers and software
Electric motors and inverters
Joysticks and control handles
Displays
Sensors

Sauer-Danfoss (US) Company
2800 East 13th Street
Ames, IA 50010, USA
Phone: +1 515 239-6000
Fax: +1 515 239-6618

Sauer-Danfoss GmbH & Co. OHG
Postfach 2460, D-24531 Neumünster
Krokamp 35, D-24539 Neumünster, Germany
Phone: +49 4321 871-0
Fax: +49 4321 871 122

Sauer-Danfoss ApS
DK-6430 Nordborg, Denmark
Phone: +45 7488 4444
Fax: +45 7488 4400

Sauer-Danfoss-Daikin LTD
Sannomiya Grand Bldg. 8F
2-2-21 Isogami-dori, Chuo-ku
Kobe, Hyogo 651-0086, Japan
Phone: +81 78 231 5001
Fax: +81 78 231 5004

www.sauer-danfoss.com